

Submission of Genomes to GenBank

Karen Clark
NCBI Genome Resources Workshop
PAG XXVII January 14, 2019

GenBank is...

- regular data exchange
- data standards
- open and unrestricted access

- globally comprehensive coverage
- scientific database of record
- public forum for the scientific process

Why GenBank?

- Accessioned datasets for journals and so that everyone is referring to the same sequences
- Common point of data access, regardless of species
- Common file formats, regardless of species
- Value added: QA on incoming submissions, and the errors are reported back so that they can be corrected

What is needed?

- BioProject to describe the research effort
- BioSample to describe the sample that was sequenced
- Assembled sequences
- Assignment information, if relevant = which sequences belong to or are chromosomes
- AGP to assemble scaffolds into chromosomes, if relevant

WEB: https://www.ncbi.nlm.nih.gov/genbank/eukaryotic submission/

Factsheet: https://go.usa.gov/xEbbF (https://ftp.ncbi.nlm.nih.gov/pub/factsheets/Factsheet_EukGenomeSubmission.pdf)

BioSample: Metadata is important

 Use the same BioSample for data that come from the same source

- RNAseq data would have a different BioSample for each tissue
- When reads from multiple BioSamples are used to create a genome assembly, make a new 'combination' BioSample that has the common information and refers to the others in a note

"Model organism or animal sample" package

https://submit.ncbi.nlm.nih.gov/biosample/template/?package=Model.organism.animal.1.0& action=definition


```
      sample_title
      bioproject_accession

      biomaterial_provider
      birth_date
      birth_location
      breeding_history
      breeding_method
      cell_line

      cell_subtype
      cell_type
      collected_by
      collection_date
      culture_collection
      death_date
      disease

      disease_stage
      genotype
      geo_loc_name
      growth_protocol
      health_state
      isolation_source

      lat_lon
      phenotype
      sample_type
      specimen_voucher
      store_cond
      stud_book_number
      treatment
      description
```


Plus 'custom attributes', if desired

Improvements to genome submissions

- We accept Gapped submissions:
 - FASTA sequence of the scaffolds, with information about which Ns represent gaps
 - Can be submitted with an AGP file to make chromosomes
- Still accept the traditional type:
 - contigs + optional AGP file(s) to make scaffolds and/or chromosomes
- Batch submission available:
 - A single submission can have up to 400 genomes that meet certain requirements, eg that they are in the same BioProject

Annotation

- Optional, but nice to have
- Should be on the upper-level objects, ie scaffolds or chromosomes
- Product names should conform to the International Protein Nomenclature Guidelines (NCBI/SwissProt/EBI)
 - https://www.ncbi.nlm.nih.gov/genome/doc/internatprot_nomenguide/
- Input can be
 - 5-column feature table (.tbl file)
 - https://www.ncbi.nlm.nih.gov/genbank/eukaryotic_genome_submission_annotation/
 - GenBank-specific GFF/GTF file
 - https://www.ncbi.nlm.nih.gov/genbank/genomes_gff/
- Run our tools to create the file for submission

What to submit when unannotated?

FASTA if no scaffold-breaking gaps

+AGP file to assemble chromosomes that have scaffold-breaking gaps (AGP optional for 'within scaffold' gaps)

"Diploid" assemblies-

- Submit each pseudohaplotype to GenBank as a separate assembly
- Use the same BioSample for both
- Create a separate BioProject for each
- Indicate in the comment box whether this is
 - the principal assembly
 - the alternate pseudohaplotype assembly
- Encode distinguishing information in the assembly names, eg

Organism	Principal	Alternate
Bos taurus	Btau_diploid_p1.0	Btau_diploid_a1.0
T. guttata	bTaeGut1_v1.p	bTaeGut_v1.h

- An umbrella BioProject for the pair will be created
- The assemblies will be linked to each other in the Assembly resource
- We're still working on the tools to submit and to view these more easily

VGP male Taeniopygia guttata (zebra finch) genome sequencing Accession: PRJNA510143 ID: 51014 and assembly Taeniopygia guttata (zebra finch) genome sequencing and assembly NAVIGATE UP This project is a component of the PRJNA510143 Accession Vertebrate Genomes Project Type Umbrella project NAVIGATE ACROSS Organism Taeniopygia guttata [Taxonomy ID: 59729] Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Archelosauria; Archosauria; 3 additional Dinosauria; Saurischia; Theropoda; Coelurosauria; Aves; Neognathae; Passeriformes; projects are Passeroidea; Estrildidae; Estrildinae; Taeniopygia; Taeniopygia guttata components of the Vertebrate Grants "Molecular mechanisms of vocal learning" (Grant ID 1, Howard Hughes Medical Genomes Proje Institute) Submission Registration date: 14-Dec-2018 Vertebrate Genomes Project - G10K Relevance Model Organism Project Data:

Resource Name	Number of Links
SEQUENCE DATA	<u>'</u>
Nucleotide (total)	35
WGS master	2
UBLICATIONS	
PubMed	2
PMC	2
THER DATASETS	
BioSample	
Assembly	(2
his project encompasses the following 2 sub	-projects:
Project Type	Number
Genome sequencing	

Project Type				Number of Projects
_	evel of assembly	·:		4
Chromos Scaffolds Total				1 2
BioProject accession	Assembly level	Organism	Title	
PRJNA489098	Chromosomes	Taeniopygia guttata	Taeniopygia guttata (zebra finch) genome sembly, primary haplotype, v1 (Vertebrate Genomes Project)	
PRJNA489099	Scaffolds	Taeniopygia guttata	Taeniopygia guttata (zebra finch) genome sequencing and assembly, alternate haplotype, v1 (Vertebrate Genomes Project)	

ct/PRJNA510143

Organism: Taeniopygia guttata (zebra finch) Sex: male

Submitter: Vertebrate Genomes Project

Filters activated: Exclude anomalous. Clear all

Date: 2018/12/20

bTaeGut1 v1.p

Assembly level: Chromosome Genome representation: full

GenBank assembly accession: GCA_003957565.1 (latest)

RefSeq assembly accession: n/a

IDs: 2174221 [UID] 8109868 [GenBank]

BioProject BioSample Nucleotide INSDC Taxonomy WGS Master

bTaeGut1 v1.h

Organism: Taeniopygia guttata (zebra finch)

Sex: male

Submitter: Vertebrate Genomes Project

Date: 2018/12/20

Assembly type: alternate-haplotype

Assembly level: Scaffold Genome representation: full

GenBank assembly accession: GCA_003957525.1 (latest)

RefSeq assembly accession: n/a

OTHER DATASETS BioSample 1 Assembly 1

Download Assembly details: Assembly Level WGS Chrs BioSample Taxonomy GCA_003957565 Chromosome RRCB00000000 SAMN02981239 Taeniopygia guttata

Accession: PRJNA489098 ID: 48909 aplotype, v1

https://submit.ncbi.nlm.nih.gov

What happens after an assembled genome is submitted to NCBI/GenBank?

ERROR!

Validation or Discrepancy Problems

Sources of contamination

Impact of contamination

- Functions & Homologies
 - Zebrafish gene that was actually from contaminating mouse sequence
- Propagation of Errors
 - Gene ended up in treefam.org as a zebrafish gene in the middle of mouse/rat genes, although it's not present in the current zebrafish asm
- Errors in Clinical Metagenomics
 - Identification of the reads & assemblies from a metagenome rely on a clean reference set
- Personally Identifiable Information
 - Human sequences that become public in an unrelated genome assembly

How often is contamination found?

Number of submitted data sets with contamination (% of submissions)

Project to screen and clean our public assemblies

I. Foreign Contamination Screen:

- Screen is updated as more genomes and more adaptors are added
- Suppress sequences that are all contamination
- Convert contaminating sequences to 'contamination gaps' to retain the coordinate system
- For example, removed138 contigs from Bombus impatiens
 (GCA_000188095.3) AND 5 contigs from its symbiont Candidatus
 Schmidhempelia bombi (GCA_000471645.2); cross-contaminants

II. ANI analysis to confirm the organism of prokaryotic genomes.

• For example, JVTR00000000 (GCA_001053395.1) was changed from 'Enterobacter cloacae' to 'Enterobacter kobei'

We notify the submitter of our findings before making any changes U.S. National Library of Medicine

Genome Size Test

- The genome size is generally expected to be within 4 standard deviations of the median size of the genomes of that species that are already in GenBank.
 - Failure: Contamination in vivo or in vitro; file mixup
- Genome submissions could pass this test just because there are not yet enough genomes of that species in GenBank.
- Example:

Genome size: 31,983,140

Average: 304,945,999. expected range: [152,473,000-457,418,998]

ERROR: size too small but based on only 2 samples

Updates?

- New sequencing and new assembly -> new version of WGS
 - New accessions for contigs and scaffolds; same accessions for chromosomes
- Reassemble existing sequences
 - New accessions for new scaffolds; same accessions for old scaffolds and for chromosomes
- Reannotate
 - Submitter should track the gene locus_tag's and protein accessions to the new assembly

Thank you.

This work was supported by the Intramural Research Program of the NIH, National Library of Medicine.

GenBank	GEO	Annotation Pipeline	RefSeq/Gene	GL	ov/Remap/GBench
Shelby Bidwell	Emily Clough	Francoise Thibaud-Nisse	en Eric Cox	Shashi Pujar	Valerie Schneider Peter Meric
Larissa Brown	Carlos Evangelista	Paul Kitts	Catherine Farrell	Bhanu Rajput	Nathan Bouk
Jianli Dai	Irene Kim	Mike Dicuccio	Tamara Goldfarb	Sanjida Rangwala	Hsiu-Chuan Chen
Scott Durkin	Pierre Ledoux	Wratko Hlavina	Diana Haddad	Lillian Riddick	Cliff Clausen
Michel Eschenbrenner	Hyeseung Lee	Avi Kimchi	John Jackson	Barbara Robbertse	Anatoliy Kuznetsov
Linda Frisse	Kimberly Marshall		Vinita Joardar	Brian Smith-White	
Leigh Riley	Katherine Phillippy	Jinna Choi	Kelly McGarvey	Pooja Strope A	cast of thousands Ken Katz
Karen Clark	Patti Sherman	Patrick Masterson	Michael Murphy	Anjana Vatsan	Michael Ovetsky
Ilene Mizrachi	Stephen Wilhite	Eyal Mozes	Nuala O'Leary	David Webb	Lukas Wagner
	Tanya Barrett	Robert Smith	RefSeq Developers		Andrei Shkeda
BioProject / Biosample	GEO developers	Alexandre Souvorov	Alex Astashyn		Donna Maglott
John Anderson	Alexandra Soboleva		Olga Ermolaeva		Kim Pruitt Jim Ostell
Carol Scott	Maxim Tomashevsky	1	Vamsi Kodali		Jiii Osteli
Tanya Barrett	Nadezhda Serova		Craig Wallin		

Naigong Zhang

http://www.ncbi.nlm.nih.gov/news/ https://www.youtube.com/user/NCBINLM

Watch NCBI News for updates!

GDV/Reman/GRench

NCBI Genome Resources Workshop

Time	Topic
12:50 – 1:10	Submission of Genomes to GenBank Karen Clark
1:10 – 1:30	GEO Submissions and Usage Steve Wilhite
1:30 – 1:55	From Annotation to Visualization: Exploring Genes and Genomes with NCBI Tools Eric Cox
1:55 – 2:15	Programmatic Access to Genomic Data: E-Utilities and FTP Vamsi K. Kodali
2:15 – 2:35	NCBI Resources for Phyletically-Defined Next Generation Analysis in and out of the Cloud (a.k.a. Cool New Stuff!) Ben Busby
2:35 – 3:00	Q & A session